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Laminar flow in twisted pipes 

By E. R. TUTTLE 
Department of Engineering, University of Denver, Denver CO 80208, USA 

(Received 11  August 1989 and in revised form 12 March 1990) 

The effect of torsion on fully developed laminar flow in a twisted pipe is considered 
in the low-Reynolds-number regime. The flow in a pipe of elliptical cross-section 
whose axis is straight but which is twisted about that axis is examined and the 
secondary flow pattern found. The helical pipe of circular cross-section is also 
revisited; in this case, the first-order torsional effect on the streamtubes is verified, 
and previous conclusions that such an effect would be of higher order are explained. 

1. Introduction 
While the general subject of flow in curved pipes has been examined by numerous 

authors, as evidenced by the extensive bibliographies in two recent review articles on 
the subject by Berger, Talbot & Yao (1983) and Ito (1987), some areas of this subject 
have received more attention and are better understood than others. One area which 
has received relatively little attention, and for which the results obtained by various 
investigators are in apparent conflict, is that of flow in a helically coiled pipe of finite 
pitch. It is the object of the present investigation to examine this problem in the limit 
of steady incompressible laminar flow at low Reynolds number in order to resolve the 
differences between previous results and to begin to understand the phenomena 
which appear in the secondary flow patterns when a pipe possesses torsion as well as 
curvature. 

We begin by briefly reviewing previous work on the subject. Truesdell & Adler 
(1970) suggested that, at least for coils with very small pitch, an appropriate 
approximation could be obtained by replacing the curvature for a toroidal pipe by 
the curvature for the helical pipe being considered. This was continued by Manlapaz 
& Churchill (1980) who, although recognizing that the coordinate system they were 
employing was non-orthogonal, assumed that the effects introduced by the non- 
orthogonality were negligible in the limit of small pitch. This assumption leads to 
essentially the same approximation used on an ad hoc basis by Truesdell & Adler. 

The consequences of non-orthogonality of the natural coordinate system for flow 
in a helical pipe of circular cross-section were addressed by Wang (1981) and Murata 
et al. (1981). The governing equations generated by these two sets of investigators are 
the same except for minor differences in nomenclature. On the other hand, because 
of the non-orthogonality, these equations are necessarily cast in tensor covariant 
form and the results obtained must be particularly carefully interpreted, as the 
covariant and contravariant velocity components of the velocity field are not the 
same. Interestingly enough, Wang concentrates his attention on the contravariant 
components, while Murata et al. concentrate on the covariant components. As a 
consequence, Wang finds a contribution of O(y) ,  where y is the dimensionless torsion, 
in the secondary flow; Murata et al., on the other hand, conclude that the first 
torsional effect is of O(qv) ,  where 6 is the dimensionless curvature. Wang concludes 
that the two recirculating cells found by Dean (1927, 1928) are subject to a large 
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distortion a t  relatively small values of the torsion, and become a single cell for pipes 
of very moderate pitch. The secondary flow deduced by Murata et al. does not consist 
of distinct recirculating cells at  all and must be represented by a distribution of 
secondary flow velocity vectors. 

Germano ( 1982) avoided the complications connected with non-orthogonal 
coordinates by the introduction of an orthogonal coordinate system. Carrying out 
only a first-order expansion (in y and E), he concluded that there were no first-order 
torsional effects. Germano’s work has been extended by Kao (1987), who, like Murata 
et al., finds that the secondary flow is again not derivable from a stream function and 
must be represented by secondary flow velocity vectors. Although Kao claims to 
address the paradox posed by the conflicting results of Wang and Murata et al. and 
Germano, he actually works only with Germano’s equations and does not come to 
grips with Wang’s results. 

In the present investigation, we also have chosen to use Germano’s coordinate 
system as a starting point, mainly because it enables us to avoid the interpretation 
of covariant and contravariant velocity components. This makes it possible to 
consider the velocity field in terms of ordinary vectors, which are, perhaps, somewhat 
easier to visualize. The emphasis here is more on physical interpretation of the 
velocity field than on extended calculation, it being felt that perhaps this would aid 
in resolving the differences cited above. The aim is to provide a platform from which 
further calculations at higher values of the Reynolds number (or, alternatively, the 
curvature and the torsion) can be made. In  this context, it has been found most 
useful to consider pipes of other than circular cross-section. As many pipes are of this 
type, the issue is of more than academic interest, and the insight thus gained has 
proved invaluable in understanding the problem and gaining insight into the effect 
that torsion has on the streamtubes describing the flow. 

2. Navier-Stokes and continuity equations along a space curve 
Consider a general continuous curve in space described by R(s), where s is the 

arclength along the curve and I ,  J ,  K are unit vectors in a fixed Cartesian coordinate 
system : 

R(s) = X ( S )  I +  Y(s )  J + Z ( s )  K. (1) 

The Frenet triad of unit vectors, t ,  n, b, the curvature, K ,  and the torsion, 7, are 
then given by the usual equations : 

b = t x n ,  
1 dt n = -- dR t = -  

ds ’ Kds’ 

- - - ~ t + ~ b ,  -- - -rn. 
ds 

dn 
ds 
_-  

In general, t ,  n,  and b change in direction as one passes along the curve, while K ( S )  

and 4 s )  change in magnitude. 
Now consider a pipe with axis described by R(s)  whose cross-section in the plane 

perpendicular to t is invariant as seen by an observer travelling along the curve and 
rotating with n and b. We now wish to find a useful set of Navier-Stokes equations 
to describe incompressible laminar flow in such a pipe. 

Our first consideration must be the choice of a suitable coordinate system. It is 
clear that s, the arclength along the pipe axis, should be one of the coordinates. The 
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X J Z 

FIGURE 1. Relationships among the coordinate systems employed. 

most obvious choice for the other two is the pair x, y such that the position vector 
can be written in the form 

r = R(s)+zn+yb = R(s)+xi+yj. (3) 
This choice is the rectangular analogue of the coordinate system used by Wang 
(1981). It is, unfortunately, non-orthogonal, as can immediately be seen by forming 
the infinitesimal 

On the other hand, the boundary of the pipe, expressed in these coordinates, is 
independent of s, so we can expect the boundary conditions on the pipe flow to be 
easy to apply. We shall refer to these coordinates as body-centred. 

dr = (dX -7y ds) n + (dy + 72 ds) b + (1 - K X )  dst. (4) 

Alternatively, we can select a different pair of coordinates x’, y’ such that 

r = R(s)+z’i’+y’j’, (5 )  

where i’,j’ rotate with respect to n and b as one proceeds along the pipe in such a way 
as just to undo the torsional effect, i.e. 

dj’ di’ 
ds ds 
- - K ( 9 )  COS#t; - - - - K ( S )  sin $t ; - _  

The relationship between these two coordinate choices is shown in figure 1, for which 
the tangent vector t is out of the plane of the paper. For convenience, we shall let 
qj0 = so = 0. Clearly, in this coordinate system, which we shall refer to as space- 
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centred, the equation of the pipe boundary is not, in general, independent of s. On 
the other hand, we can see that, as 

dr = dx‘i‘ + dy’j’ + (1 - KX‘ cos q5 - KY‘ sin q5) dst, (7) 
this coordinate system is orthogonal. This system is the rectangular analogue of that 
employed by German0 (1982). 

Obviously neither system is ideal. One would like to work with an orthogonal 
system but one would also like to keep invariant boundary conditions and a natural 
relationship between the cross-sectional equations and the local Frenet triad. The 
space-centred coordinates x’, yf, s’ have the first property, while the body-centred 
coordinates x,y,s  have the second. (Note that we use s’ to denote the arclength 
coordinate in the space-centred system and s to denote the same coordinate in the 
body-centred system.) As we shall now see, although no coordinate system possesses 
all the above features, it is possible, with the aid of physical understanding, to 
develop a general formulation of the problem which does. 

We first consider the x’, y’, s’ system. As this is orthogonal, the equation of 
continuity and the Navier-Stokes equations can be written in the vector form 

a t i  1. 
0’ * v’ = 0;  -+(v’  * V’) u’ = --Vfp-v[V’ x (V’X u’ ) ] ,  

at P 
(8) 

where p is the density, p the pressure, and v = ,u/p the kinematic viscosity. If we let 
u’, v’, w’ be the velocity components, then, using standard expressions for the vector 
operators in a curvilinear orthogonal system (e.g. Batchelor 1967), we obtain our 
basic equations in the form 

J’ apt 
as’ ~ ’ W ‘ - K J ’ W ‘ [ U ’ C O S ~ # + V ’ ~ ~ ~ @ ]  = --- 

where 

and J’ = 1/( 1 - KX’ cos q5 - Ky’ sin 4). (14) 
The velocity field in the plane perpendicular to the axis of the pipe is given by 

v” = u’i’+v”, 
which can also be written aa 

v” = &#’+fib‘, 
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where n' and b' are unit vectors instantaneously coinciding with n and b, i.e. 
coinciding at this particular value of s. It is easy to see that 

.12 =u' cos$+v'sin$, 

v" = -u'sin$+v'cos$. 

Now x' = xcos$--sin$, 

y' = xsin$+ycos$, 
s' = s, 

from which we find that 

a a  

a 
aY' 
a a 
- = 7y--7x-+-. 
as! ax ay as 

- _ -  

We now rewrite our basic equations (9)-(12) in terms of the velocity components 
C, fi, d ( = w'), all regarded as functions of x, y, s, obtaining 

(20) 

where 9 

and 

J l / ( l - K X ) ,  \ 
a -  a a a  
as ax ay as - = 7y--rx-+-. 

(24) 

It is important to remember that, even though C, 6, d expressed as functions of x, 
y, s are velocity components along axes coinciding instantaneously with n, b, t ,  this 
is still a space-centred formulation; n' and b' still rotate with respect to n and b. The 
rates of change of n and b with respect to n' and b are easily seen to be 

dn db 
ds ds 
- = 7 b ,  _ _  - -rn, 
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so the angular velocity of the t', n', b' triad with respect to the t ,  n, b triad is simply 

o = rJ6t. (26) 

From elementary kinematics we now see that 

v" = 6t' +$in' + Gb', 

= wt + (un + vb) + rJw( - yn + xb), 
= u , + u + o x ( x i + ~ ) .  (27 ) 

Thus the velocity field u' = v" is to be interpreted as the sum of three contributions: 
(i) a translational velocity parallel to the axis; 
(ii) a velocity in the plane perpendicular to the axis as seen by an observer fixed 

(iii) a rotational velocity caused by the rotation of n and b about the tangent 
with respect to the Frenet triad; and 

vector t .  Comparing the two forms of (27), we see that 

u = d + ~ J y 6 ,  v = C - T J X ~ ,  w = 6. (28) 

Now as u, v, w vanish on the pipe surface, so do d,  5, and 6, all now expressed as 
functions of the body-centred coordinates x, y, s. 

It can be shown that the velocity field calculated by German0 (1982) is actually 
the u', v', w' or $i,v",6 field and that his equations of motion are equivalent to those 
of (9)-( 12). On the other hand, the velocity field calculated by Wang (1981) is the u, 
v, w field, 

v1 = U,  v 2  = V ,  v3 = wJ, 

his equations of motion being equivalent to (20)-(23) once G,5, 6 have been replaced 
by u , v , w  according to the prescription of (28). Note that, to obtain detailed 
agreement, one must transform (23) to contravariant form. 

To conclude this section, let us consider the question of fully developed steady flow 
and attempt to answer the question of the effect of torsion on the secondary flow 
found by Dean (1927, 1928). We first set all partials with respect to t equal to zero, 
as there is no time dependence, and assume that the curvature and torsion are both 
constant (independent of s).  We cannot assume that u', v', w' are independent of s, as 
the axes f,j' have different orientations with respect to the pipe cross-section 
at  different s. On the other hand, ii,v",6, and u,v,w are all independent of s ,  and 
p ( x ,  y,s) depends on s linearly in lowest order. With these assumptions, the 
continuity equation (20) reduces to 

a E+TJYz?) a -[ ax J I+&[ J I=" 
or 

It is easy to see that u and v can be derived from a scalar stream function Y(x, y), 
where 

ay a l y  
aY ax U(X,Y) = J-, V(X,Y) = -J-. 

Thus Y(x, y) can be used to define secondary flow streamlines of u, v in the (x, y)- 
plane. We must note that no similar stream function exists for the velocity 
components G, v", as the terms in 6 act as sources and sinks. We also see that a two- 
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dimensional secondary flow pattern of the Dean type only exists for the observer who 
moves along the curve and rotates with the normal and binormal, i.e. a body-centred 
observer. Furthermore, this observer will indeed see the first-order effect on the two 
recirculating cells which was predicted by Wang (1981). From the point of view of 
a space-centred observer, Y(x, y) = c1 is a surface in three-dimensional space. It is 
easy to show that 

i.e. the normal to the surface Y ( x ,  y) = Y(x’, y‘, s’) = constant is always normal to the 
velocity u’ whose components are u’, v’, w‘. This surface therefore describes a 
streamtube in the inertial frame X ,  Y ,  2. 

On the other hand, the calculation of the flow rate is obviously performed by a 
body-centred observer, located at a particular plane s = constant, and thus has the 
form 

(V’Y) * u’ = 0, (31a) 

Q = I A GdA = J A , W ’ U ’ .  (31b) 

This is also in agreement with the calculation given by Wang, where it is the 
covariant axial velocity which is integrated to obtain the total flow rate. 

3. Twisted straight pipes 
Before considering flow in a helical pipe, for which both K and r are non-zero, let 

us examine steady, fully developed flow in a pipe whose axis is straight, but which 
is uniformly twisted about that axis, so that the axes fixed in the cross-section 
advance as one proceeds along the pipe. In this case, in the limit in which the 
curvature, K ,  tends to zero, the twist or torsion, r ,  remains finite. This permits us to 
examine the torsion effects separately from those induced by curvature of the pipe. 
For r constant, (20)-(23) are easily reduced and rearranged to the following : 

au av 
ax ay 
-+- = 0, 

(324 
ay aly 

a Y  ax 
with u = .ii+ryw = -, v = G-TXW = --. 

It is instructive to consider a pipe of elliptical cross-section, for which the 
untwisted solution is known. Let the pipe be twisted through one complete turn in 
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the distance sT = 2nd, so that  r = l /d ,  and let the axes of the ellipse be 2a and 2b, 
where d is much greater than either a orb .  In  order to render the governing equations 
dimensionless, we scale all lengths by a length H ,  which is of the same order as a and 
b, all velocities by the centreline velocity U,, and introduce a Reynolds number based 
on H ,  B = U, H / v  ; the dimensionless pressure P is then given by P = pH/(,uU,), and 
the dimensionless stream function by @ = !P/(U,D). The length H has been used 
rather than either a or b in order to emphasize the symmetry in the exchange of X I A  
with Y/B.  We now proceed to solve (32)  by the method of successive approximation, 
using the solution for the straight pipe of elliptical cross-section as the zeroth-order 
approximation ; i.e. 

To first order in y = 70, we find 

and, as O1 must contain the factor [ l  - (X/A)’+  (y/B)’ l2  if the no-slip conditions on 
U and V are to be satisfied, it is easy to show that 

Substitution of U, and V, into the axial flow equation then yields the result Wl = 0. 
This is a consequence of the symmetry of this particular cross-section, and will not 
be true in general. It is clear that U, and V, do not vanish as B + A ;  as the body- 
centred observer rotates counterclockwise, he must see the fluid rotating clockwise. 
On the other hand, the instantaneous velocity projections and the pressure as given 

where (37)  

vanish in this limit and so, therefore, do the space-centred velocities U’ and V’. We 
should also note that, if A = B, then 

is an exact solution of (32) ,  as indeed i t  should be. 
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I y  

FIGURE 2. Angle of advance of fluid from the points of view of the body-centred 
and the space-centred observer (V) ,  

observer 

For this very simple problem, in this order, it is possible to find the analytic 
equations for the streamlines. On the streamline for which 

x* y" -+- = c2 
A' B' (39) 

we find that X = CAcos(yaS+q3,), Y = -CBain(yaS+$,), (40) 

where a "('+'), 
ABA, A' B' 

which become, in the space-centred system, 

X' = ~ B C [ - A _ C O S ( ~ + S + ~ ~ , ) + A + C ~ ~ ( ~ _ S - ~ ~ , ) ] , ~  

Y'= $4BC[-A- sin(~+S+gl,)+A+sin(w~S-glo)], J (42) 

where A ,  =(:*:), W +  = A ~ l S Z , = y ( l f a ) ,  (43) 

As, in general, the ratio w+/w- is not rational, a two-dimensional plot of X' us. Y' is 
neither periodic nor closed. 

By looking a t  such a streamline in polar coordinates we can see how rapidly it 
wraps itself around the axis of the pipe (cf. figure 2). From the body-centred point 
of view this involves an examination of the angle 19, given by 

e = tan-1 (3 = -tan ($tan ( y a ~ ) ) .  

For a pipe with a right-handed twist (y  > 0) it is easy to see that 

(44) 

dI9 C' ds - -BAya "=--  
(X' + y") 

(45) 
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FIGURE 3. Contours of the secondary flow in an elliptical pipe. (a )  Contours of the first-order 
solution @J1. ( b )  Contours of the second-order solution, @J2. 

is always negative and the streamline always appears to progress clockwise. From 
the space-centred system, however, 

8' = tanp1 (Y'/X) = yS+ 8, (46) 

and 
w , =--=y{1-4(L+L) d8' C2 } 

ds A2 B2 dl(X2+Y") ' (47) 

which may be either positive or negative. As a matter of fact, although 8' does 
increase with S in the long run, there are always local regions of retrograde motion. 

None of the results obtained thus far for the secondary flow involve the inertial 
terms. By continuing the calculations to second order in y we obtain the first inertial 
contributions and, thus, the first distortions of the twisted elliptical streamtubes and 
the first direct dependence on W. Without going into detail, we find that 

where 

+-+-+- x -+- I' 7 28 58 28 
[AE A6B2 A4B4 A2B6 BE ' 

I 
Figure 3(a,  b )  shows separate plots of djl and gjZ, the arrows indicating the 

direction of flow from the point of view of the observer who moves along the axis of 
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FIGURE 4. Superposition of the secondary flow contours for (a) yW = 0.1, (6) yW = 5, 
and (e) yW = 40. 

the pipe and rotates with i t  so that the cross-section is always oriented as shown. (In 
all the plots in the remainder of this section the ratio of semi-minor to semi-major 
axes, B/A,  is taken to be 0.5.) In  each case the contours are equally spaced. The plot 
of @jl shows the familiar and expected elliptical contours, though it should be noted 
that the spacing is quadratic, rather than linear. The plot of G2 yields four circulating 
cells; those in the first and third quadrants have positive values of G, and 
counterclockwise flow, while those in the second and fourth quadrants have negative 
values and clockwise flow. 

Figure 4 shows the effect of superposition of the two contributions for three values 
of the parameter yW using H = A ,  namely yW = 0.1, 5 and 40. (As in the Dean case 
for flow in a toroidal pipe, higher-order terms in this problem tend to be associated 
with characteristic denominators ; for the torsion terms this number seems to be 120.) 
For y B  = 0.1, the pattern is indistinguishable from that for @j1, as seen in figure 4 (a) .  
For yB = 5, the pattern is distorted, but clearly displays its elliptical origin. In figure 
4(c),  the distortion is sufficient to cause the appearance of small counterclockwise 
rotating cells. These last should not be taken very seriously, as yW = 40 is probably 
beyond the range of validity of the current approximation ; higher-order terms (will 
have almost certainly become important by this time. Although the main flow 
contours have approximately equal spacing, the counterflow contour shown has only 
& the main-flow spacing. 

One can also find the second-order component of the asial flow W, ; this consists of 
a non-inertial part containing terms of up to fourth order in X and Y and an inertial 
contribution containing terms of up to tenth order in the same quantities. It is 
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FIGURE 5.  Contours of the distortion of the axial flow. (a) Non-inertial contribution. ( b )  Inertial 
contribution. 

relatively easy to find the three non-inertial coefficients in the expression for the non- 
inertial contribution to W,. On the other hand, the 15 equations for the 15 coefficients 
appearing in the inertial contribution are sufficiently complicated that it has been 
found more convenient to find these numerically for each assumed value of the ratio 
B/A. The details of this calculation are given in Appendix A. Figure 5 gives plots of 
the non-inertial (figure 5a)  and inertial (figure 5 b )  contributions to W,. The non- 
inertial part of W, is negative everywhere except in the two small areas at  the ends 
of the minor axis of the ellipse, while the inertial part is negative in the central 
portion and positive in the two regions on opposite ends of the major axis. As both 
contributions are proportional to y2,  their relative size depends only on the Reynolds 
number. Figure 6 shows the development of the total W, contribution for 9 = 0.1, 10, 
and 40 ; the contributions are negative in most of the flow field. To obtain the full 
axial velocity pattern, one must add to this the unperturbed flow field W, = 
(1-X2/A2-Irz/B2), When this has been done, one finds that the entire field is 
positive, at  least for any reasonable (small) values of y ;  and, as these are all second- 
order contributions, the apparent distortion of the axial flow is too small to observe 
on a contour plot of this type. 

Finally, one can find the change in the flow rate by integrating W, over the 
elliptical cross-section. One finds that the inertial part of W, yields no change in total 
flow rate (one can show that the first inertial contribution will not appear until fourth 
order in y ) ,  but that the non-inertial part yields a decrease in flow rate given by 

_ -  AQ -- 4AzBzy2( 1 --- l) '(  1 -+- 1 )  , 
QS A ,  A 2  B2 A 2  B2 

which clearly vanishes in the limit of a circular pipe. 
The problem of the elliptical pipe has also been studied by Todd (1977). He uses 

governing equations which can be reduced to (20)-(23) above, and solves for the 
space-centred transverse velocity field 8, to first order, and for the longitudinal 
velocity field to second order. While he realizes that the velocity across the main flow 
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FIGURE 6. Contours of the total second-order contributions to the axial flow. (a) W = 0.1, 
( b )  9 = 10, (c) 9 = 40. 

must be modified, he does not appear to recognize that the ‘correction factor’ is, in 
reality, general and involves more than the longitudinal flow in the untwisted pipe. 
The longitudinal velocity profiles appear to agree with those given here. 

4. Helical pipe flow 
Finally, we address the question of fully developed flow in a helical pipe of circular 

cross-section, which is the problem considered by Wang (1981), German0 (1982), and 
Kao (1987). It is convenient to change to polar rather than rectangular coordinates, 
as shown in figure 7, and to make all equations dimensionless by referring all lengths 
to a,  the pipe radius, all velocities to U,,, the centreline axial velocity in pure 
Poiseuille flow, and the pressure to ,uU,,/a. Thus 

r s q = - ,  X E -  , e =  K a ,  y = r a ,  
a a I 

and 
a a a  - 
7 - -+7-. 
as as a0 

8’ = o+q5+;7c, I 
The velocities analogous to those of $2 can then be shown to be 

U’ = O= U, v = 8 =  V+yqW/(1+qsino), w = IT= W ,  (52) 
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Z 

FIGURE 7. Coordinates used for analysis of flow in a helical pipe of circular cross-section. 

and the basic equations for steady, fully developed flow equivalent to (20)-(23) 
become 

, (53b)  

, ( 5 3 ~ )  

where 

J 3 l/(l+epsinO). J 
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FIGURE 8. Contour plots of the stream function @ for (a )  E = 0.1, y = 0;  ( b )  E = 0.099, y = 0.0099; 
( c )  E = 0.05, y = 0.05; (d)  E = 0.0099, y = 0.099; all for 93 = 100. All contours are equally spaced. 

Except for minor changes in nomenclature, these are the same as the basic 
equations formulated by Germano (1982),  with 0, P, @ being his velocity 
components. If one now makes a change of dependent variables from d, P, @ to U,  
V ,  Wand performs some rather tedious manipulations, one can obtain the equations 
of motion given by Wang (1981), with 

U = u = d, V = v = ?p2, W J  = 

In  other words, Germano and Wang are simply considering the same velocity field, 
but from different points of view. 

We must now select a suitable perturbation scheme. Both Wang and Germano use 
an expansion in powers of the parameter e = KU, including the torsional effects 
through the ratio T / K  = A ;  Kao (1987) includes these in the expansion parameter 
p = a ~ ~ / ( 2 ~ ) .  In all cases, these ratios are assumed to be at most of O ( 1 ) .  However, 
as we saw in the previous section, for a problem in which both parameters given 
above tend to infinity, it  is quite possible to consider situations in which the 
curvature tends to zero while the torsion remains finite. We have found it both useful 
and instructive to be able to keep this as a possible limit. We therefore consider an 
expansion in the two parameters e and y and take each of the dependent variables 
to be given by a series of the form 

P = Po, + go, + E2FO2 + . . . 
+ yFlo + VFIl + + . . . 
+..., (54) 

in which the first subscript indicates the associated power of y and the second, the 
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associated power ofe, both considered to be much less than 1. Returning to Wang's 
and Germano's results, we see that their calculations actually include the terms 

F x 4, + E E b l +  yF10, (55) 

where Foo represents the Poiseuille flow in a straight pipe and €Pol, the first-order 
Dean flow. German0 finds that, from his point of view, all yF,, = 0, while Wang finds 

(56) 

in agreement with the prescription of (52). The two results are thus completely 
consistent with each other. 

It is instructive to  find the eyFil terms ; these represent the lowest-order distortion 
of the Dean Aow by the torsion. In the'approximation 

u,, = Wl0 = nl, = 0, v,, = q(@- 1)  = -qWo0, 

F = Foo + f l O l +  yP10 + V G  
we obtain the following : 

(57) 

Ey9Z 
(7" - 9f '+  3 0 ~ ~  - 5 0 ~ ~  + 41q3 - 137) sin 8, (58) - 

(288) (240) 

W = (1-72)+$e(q3-q)sin8 

(7' - 107' + 30r5 - 4 0 ~ ~  + 197) sin 8 
e g 2  

(288) (40) 

e Y g  

+ 

+ - (3v7 - 8v5 - 24r3 + 297) cos 8 
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eyB3 
( 2 0 p  - 2 9 4 ~ ~ ~  + 15757' - 4 5 5 0 ~ ~  

-t (288)' (350) 

"Y 
6 9  

I7 = - 4x + &e(275 - 6r3 + 97) sin 8 + - (3$ - 7)  cos 8 

The transverse bodg-centred velocities U and V are obtained from the function Q, as 
follows : 

and the transverse space-centred velocities 0 and P can be obtained from these 
through (52). 

Figures 8, 9, and 10 illustrate the results obtained above. At the low values of 
Reynolds number required for these to be significant, it  is easy to  see that the second- 
order term in @ which is dependent only on y rapidly dominates the transverse flow 
pattern, as predicted by Wang (1981), while the equivalent terms in W and I7 show 
a much weaker effect. The plots of W ,  if rotated so that the dividing lines coincide, 
are almost indistinguishable from each other ; the same is true of the plots of 17. Thus 
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FIGURE 9. Contour plots of the change in axial flow AW for (a )  E = 0.1, y = 0;  ( b )  E = 0.099, 
y = 0.0099; (c) E = 0.05, y = 0.05; (d) B = 0.0099, y = 0.099; all for 9 = 100. All contours are 
equally spaced. 

FIQURE 10. Contour plots of the pressure change AL' for (a )  E = 0.1, y = 0;  ( b )  E = 0.099, 
y = 0.0099; (c) E = 0.05, y = 0.05; ( d )  E = 0.0099, y = 0.099; all for 5e = 100. All contours are 
equally spaced. 



562 E .  R. Tuttle 

FIGURE 11. Simulation of the effects of torsion on the Dean circulating cells : contours of 
(left) and AW, (right). (a) y9/240 = 0,  (6) y9/240 = &, (c )  yW/240 = 4. 

at very low Reynolds numbers, the torsion very rapidly becomes the dominant factor 
in the transverse flow pattern and can, for moderate values of the torsion, cause the 
coalescence of the two recirculating Dean cells. 

In order to analyse the torsional effect a t  higher Reynolds numbers, where the 
second term in @ is less dominant, one should either extend the perturbation solution 
to considerably higher orders in E and y ,  following the example of Larrain & Bonilla 
(1970), or, alternatively, attempt a numerical solution of the full set of governing 
equations (53). While such calculations are clearly possible, they are also beyond the 
scope of the present analysis. In addition, the effect of torsion in that case becomes 
confused with the effect of higher-order terms in the Dean solution for a toroidal pipe, 
thus obscuring the phenomenon being examined. We have therefore considered 
instead the effect produced in the limit in which those terms in ( E ~ ~ ~ B ? ~ + ~ )  dominate 
the velocity field in the approximation obtained so far. In  (58)  for the stream 
function @, these are the first and last terms ; in (59) for W, the third and last (we 
again consider only the perturbation to the Poiseuille flow) ; and in (60) for l7, the 
second and last terms. By varying the quantity yB?/240, we can now see the 
distortion of the first-order Dean flow by torsion. The results are shown in figures 11 
and 12; figure 11 shows the contours of @ and W, while figure 12 shows those for l7. 
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FIGURE 12. Simulation of the effects of torsion on the Dean circulating cells: contours of A n .  
(a) yW/240 = 0, (b) yR/240 = &, (c) yw/240 = f. 

It is clear that the main effect is one of rotation of the flow pattern, the distortion 
being clearly secondary. 

Finally, we would like to find the effect of torsion on the flow rate. It is obvious 
from the form of Rl that there is no change of O(ey) ,  in agreement with the 
conclusion reached by Wang (1981). Before we embark on a great deal of tedious 
algebra, it is useful to analyse the original governing equations (53)  to determine 
exactly what calculations are likely to be necessary. We can make use of the same 
type of technique used by Larrain & Bonilla (1970) to determine the angular 
dependence of all the terms in the series solution (54). Table 1 gives these for all e,, 
up to, and including, fourth-order terms in any E ,  y combination. The Po,, terms are, 
of course, in agreement with those found by Larrain & Bonilla (1970). If we now 
examine the third-order axial flow, given by 

@ = y2El,vzl + y E q 2  +€3W03, 

we see that it contains only terms proportional to sin n9, and contributes nothing to 
the total flow rate, and that the first torsion-dependent contribution to the total flow 
rate arises from the constant part of R,z and is proportional to (s2y2). In  general, all 
torsional contributions to the total flow rate are proportional to (yZnezm),  where 
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Angular dependence 

0, P, 17 
1 (0 excepted) 

none 
sin 8 

none 
cos 8 
1, cos28 

none 
sin 8 
sin 28 
sin 8, sin 38 

none 
cos e 
1, cos 28 
cos 8, cos 38 
1, cos 20, cos 48 

F 
none 

none 
cos 8 

none 
sin 8 
sin 28 

none 
cos 8 
1, cos2e 
cos 8, cos 38 

none 
sin 8 
sin 28 
sin 8, sin 38 
sin 28, sin 48 

TABLE 1. Angular dependences of terms in the perturbation expansion of the velocity field and 
the pressure 

n 3 1 ; this last condition is a consequence of the vanishing of all terms &. Thus 
calculation of the change in flow rate due to torsion requires the calculation of the 
constant part of R, ; details of this calculation are given in Appendix B. We finally 
find the following fractional change in flow rate from torsion effects as compared to 
the flow in a straight pipe: 

g2 3(12483167) W 2  (388817) W 2  8397 31 AQ7-9 288 288 1 (140)'(330)- 288 (20)'(105)- ( 28 ) 140 +TI. 0 QS 
(62) -- 

We note that the change calculated here is only that due to torsion; the toroidal 
change has not been included, as it has been calculated by, for instance, Topakoglu 
(1967). According to this calculation, in cases where the first term dominates, the 
overall effect is of an increase in flow rate over that in a toroidal pipe of equal 
curvature. 

It is important to remember that the results of this section apply only to pipes of 
strictly circular cross-section. For pipes of other cross-sections, the E;, terms do not 
vanish, and the effects of torsion appear in lower-order terms of the perturbation 
series (cf. the elliptical pipe of the previous section). In  particular, for pipes of non- 
circular cross-section, one can expect to find contributions to the flow rate of order 
y2 alone. It is the rotational symmetry of the present case that causes the torsional 
effect to be pushed to a higher order in the perturbation series. This fortuitous 
circumstance also appears to have been the source of the confusion between the 
results obtained by Wang (1981) and German0 (1982). The streamtube cross-sections 
reported by Wang are those observed by an individual moving along the pipe and 
rotating with i t  in such a way that he is invariantly oriented with respect to the 
normal and binormal to the pipe axis. Germano's observer, on the other hand, also 
moves along the pipe axis, but rotates with respect to the normal and binormal. 
While this leaves the first-order terms (for the circular pipe) as the original Dean 
cells, calculation of the (ey) terms yields a transverse flow pattern which appears to 
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have sources and sinks. This is obscured by the velocity plots reported by Murata 
et al. (1981) and Kao (1987). 

5. Conclusions and discussion 
We have seen that the velocity field in a fixed frame can be written as the sum of 

three terms : a velocity along the pipe axis, a velocity seen by an observer travelling 
along the pipe axis and rotating with the Frenet triad, and a velocity representing 
the rotation of the Frenet triad, which is represented by o x r ,  in agreement with 
elementary kinematics. The governing equations can be written in such a way that 
either the body-centred or the space-centred velocity components are the dependent 
variables; from these, one set of components can be found and the other easily 
generated by addition of the o x t term. The formulation given here is applicable not 
only to flow in helical pipes, but also to flow in pipes whose axes are straight but 
whose cross-sections precess about the pipe axis; these two problems are actually 
closely related. 

The key to the question of whether torsion has a first- or second-order effect on the 
secondary flow in a helical pipe of circular cross-section is really only a question of 
the frame of reference of the observer; for a space-centred observer, the effect is of 
second order, while for a body-centred observer, the effect is of first order. While this 
result would seem to argue in favour of using a space-centred system for describing 
the secondary flow, consideration of pipes of cross-section other than circular and of 
higher-order terms for the case of a circular cross-section argue against it, as the 
streamtubes are not invariant in such a description. On the other hand, in the body- 
centred system, the streamtubes are invariant, and the secondary flow can be 
depicted in two dimensions. It is worth remembering that a streamtube is actually 
a two-dimensional surface embedded in a three-dimensional space, and a streamline 
is a directed line which itself is embedded in the two-dimensional surface described 
by the streamtube. Dean’s recirculating cells of secondary flow are themselves only 
the projections on the pipe cross-section of the streamtube cross-sections, with 
arrows denoting the direction of circulation. Once this is realized, then it is clear that 
discussion of the effect of torsion on these cells must be made in a framework in which 
the streamtube projections can be found; this is clearly the body-centred 
formulation, as is easily seen from the continuity equation. From this we conclude 
that the coalescence of the two Dean cells owing to torsion is a first-order effect, in 
agreement with Wang’s conclusions. The conclusion that the effect of torsion is of 
higher order, reached by German0 and Kao, is an accident of the symmetry of the 
cross-section chosen and does not hold up under analysis of higher-order terms, for 
which the concept of the projection of the streamtube cross-section onto the pipe 
cross-section is not relevant. This is particularly clear in cases where the pipe cross- 
section is not circular. 

The author would like to thank the University of Exeter (UK) for its hospitality 
during a sabbatical leave during which much of this work was done. In  particular, 
discussions of this work with Dr M. A. Patrick and the use of his contour plotting 
program are gratefully acknowledged. 
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Appendix A. Second-order calculation of the axial velocity in a straight 
elliptical pipe 

The axial flow in second order is composed of two contributions : an inertial part, 
which we shall denote by p2, I ,  and a non-inertial part, which we shall denote by R, N. 

We consider the inertial part first. From ( 3 2 d ) ,  we find that 

where Q2 is given by (48) and (49). The solution to this equation must be of the form 

Upon substituting this form of Wz,I into (A 1) and matching coefficients, we can 
obtain equations for the 15 coefficients A, in the form 
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A 15 
A2 B2 

Q6 = 2D0-D,+B+-A10, 

567 

(A 4) 
28 A12 15 6 
A2 B2 A B2 

Q = D -2D,+-A,1+--, Q8 = Do-2Du+,A12+-A13, 7 0  

A ,  Go, C,, and C, having been defined in connection with the stream function G2 in 
(49). The analytic solution of these equations for the Ai in terms of Do, D,, and D, 
is exceedingly tedious and error-prone, so a slightly different approach has been used. 
It is relatively easy to find the coefficients in each group of coefficients in terms of the 
quantities Qi defined in (A 4). The last five coefficients are now in the analytic form 
required, and can be substituted into the expressions for Q7-Ql0, thus yielding 
solutions for the corresponding Ai .  These results provide the input for etc. 
This program has been implemented by computer to give the results shown in figure 
5 (b ) .  By careful use of the symmetry of the problem with respect to the interchange 
of X and Y and of A and B,  it can be shown that R, I contributes nothing to the total 
flow rate. This result was reported earlier by Todd (1977) on the basis of computer 
calculations. We suspect that this will be true for any cross-section with two 
mutually perpendicular planes of reflection, but have not been able to establish this 
more general result. 

We now turn to the non-inertial terms. The non-inertial part of W, satisfies the 
equation 

V 2 W 2 3 = - y 2  Y--x- wo+y Y - - x -  Pl, ( & ay ( & &) 
where PI has been given by (36). This reduces to the form 

whose solution is 

1 6  6 , N  = 
A ,  -+-+- 

(A4 A2B2 B4 

+- X 2 +  -+-+- y2 . x 2 --- - -+- ( A 8 )  ) (:4 A k 2  i4) ] 4 3  [ (A’. j2) (14 A 2B2 B4 

This solution is shown in figure 5(a), and generates the second-order change in the 
total flow rate, as discussed in $3. 
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Appendix B. Calculation of the flow rate in a helical coil of circular cross- 
section 

As outlined in 84, the lowest-order correction to the flow rate in a helical pipe of 
circular cross-section depends only on the angle-independent part of R2, and is of 
0(e2y2) .  We denote this contribution by Wz2. Expansion of ( 5 3 4  leads to the 
following equation for W22 : 

a%, - a%, - aRl - Rl 
a7 a7 a7 

+ 9 { 022 7 + u,, -+ Ul1 -+ u,, - 

i a%, - a q l  - am2l - a%, - aRl 
+- [El =+ 6,  -+ 88 v,, -1 a6 - Y w,, x- Y%,, 

7 

which identifies the third-order terms that must be calculated. If we now make use 
of the fact that 

COS2 @ = ;( 1 + COS 26), &A2 8 = $( 1 - COB 28), 

and of the angular dependences given in table 1, then, after liberal use of the 
continuity equation, we can reduce (B 1) to the following form: 

where the constant part of u,, required can be obtained from the cont>inuity equation 

and the bars over the quantities on the right-hand sides indicate that only the redial 
dependence is to be considered. 

It is also convenient to factor out as many powers of ($ - 1) as possible from each 
of the contributing terms. These have the following form: 

(7' - 1)2 ( -q6 + 7r4 - 157, + 13), 
9 2  

(288) (240) 
0 -I( 2 - 1 ) ' +  

1 1 - 6 7  

ye 
(q2 - 1)2  ( - 1 0 2 ~ ~  + 2 7 6 ~ ~  + 1134) 

OZ1 = (288) (480) 

(r2 - i )2  ( 3 7 5 ~ ~ ' -  3 7 0 2 ~ ~  + 1 3 3 8 9 ~ ~  
9 3  

+(288)2 (140)26 
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a ( ~ ~ - 1 ) '  (1775-4673-1897) '" = (288) (160) 

(-125711+ 12347'-446377 
a3 

+(288)2 (280)2 

+ 6 9 9 0 ~ ~  - 1 6 4 7 ~ ~  - 11 2647), 

(72-l)(31j15-573-297) 

a3 

- w w,, = ___ 
(288) 2 

+ (288)2 (350) 
(7' - 1)  (20711-2747' + 1 3 0 1 ~ ~  - 3 2 4 9 ~ ~  +4381q3- 29697), 

Wz1 = &(7' - 1) (5q3 - 67) 

(r2 - 1) ( - 87' + 257' + 1 9 0 ~ ~  - 6 5 8 ~ ~  + 7747) 
a2 

+(288) (960) 

a4 

(288)2 (280)2 (24) 
(q2 - 1) ( - 4 1 5 ~ ~ ~  + 7 7 5 7 ~ ~ ~  - 5 6 0 8 3 ~ p  

+2320377'-62056777+ 1 0 6 5 2 3 3 ~ ~ -  1 16269973+697301), 

After solving (B 2) for Vz2 and integrating the result over the pipe cross-section to 
find the change in flow rate, we obtain the result given in (62). 
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